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Abstract

We studied the effects of different grazing species (cattle grazing (CG), sheep grazing (SG) and mixed-grazing of cattle and 
sheep (MG)) on fluxes of carbon dioxide (CO2) and methane (CH4) during the growing season in a desert steppe of Inner 
Mongolia, China. The static chamber method was used to measure fluxes of CO2 and CH4 from June to October, 2013. Results 
indicate that the grazed desert steppe was a net source of soil atmospheric CO2 exchange and a net sink of soil atmospheric 
CH4 exchange during the growing season. Grazing species did not alter the CO2 or CH4 flux direction. CO2 flux in the MG plot 
(256.66 mg m⁻2 h⁻1) was lower  than that in CG (351.18 mg m⁻2h⁻1) and SG (315.38 mg m⁻2 h⁻1) plots. CH4 flux in the MG plot 
(-0.1330 mg m⁻2 h⁻1) was higher than in the CG (-0.1120 mg m⁻2 h⁻1) and CK (-0.1099 mg m⁻2 h⁻1) plots. Binomial regression 
equations of the fluxes of CO2 (R2 = 0.509) and CH4 (R2 = 0.327) on soil temperature and moisture were developed. These 
findings imply that MG reduced CO2 emission by 26.9 % and 18.6 %, and increased CH4 uptake by 18.8 % and 14.7 % com-
pared with CG and SG, respectively, in a desert steppe of Inner Mongolia. 
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Abbreviations: 

CG: Cattle Grazing; 
SG: Sheep Grazing; 
MG: Mixed-Grazing of Cattle and Sheep;
GHG: Greenhouse Gas 

Introduction

Soil-atmosphere greenhouse gas (GHG) exchange in ter-
restrial ecosystems has an important effect on global cli-
mate change. The carbon dioxide (CO2) concentration in the  
atmosphere has reached 400 ppm and the average global 
temperature has increased by 0.85 °C from 1880 to 2012 
[1]. Although methane (CH4) flux from the soil-atmosphere 
is usually smaller than CO2 flux, the global warming poten-

tial on a molar basis of CH4 over a 100-year timeframe is 
34 times greater than CO2 [2]. Factors affecting the sources 
and sinks of GHGs in terrestrial ecosystems are therefore 
an important topic of study. Several studies of CO2 and CH4 
fluxes from soils have focused on agricultural and forest  
ecosystems in the temperate zones of Europe and North 
America [3-5], and there are more limited reports for 
semi-arid grassland ecosystems in the Eurasian steppe  
[6-8].
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Materials and Methods

Study site

The study was conducted in Xilamuren desert steppe, locat-
ed at 41° 21′ N, 111° 112′ E, at an elevation of approximate-
ly 1,602 m above sea level. The regional climate is temperate 
continental, characterized by a short growing season and long 
cold winter, with a frost-free period of 83 d. The average annual 
precipitation is approximately 284 mm, of which nearly 75 % 
falls from July to September, and evaporation is 2305 mm. The 
average annual temperature is 2.5 °C and there are 3100–3300 
sunshine hours. The dominant soil types are Kastanozem (FAO 
soil classification) or Brown Chernozem (Canadian Soil Classi-
fication) with a loamy sand texture. The steppe is dominated 
by Stipa krylovii Griseb, Artemisia frigida Willd, and accom-
panied by Leymus chinensis Tzvel, Stellera chamaejasme Linn, 
Leynus secalinus Tzvel, and Heteropappus altaicus Novopokr.

Experimental design

The fluxes of CO2 and CH4 were measured in twelve graz-
ing plots in 2013. Before a grazing experiment began on 
these plots in 2012, the area had been under free grazing. 
The grazing experiment that started in 2012 was composed 
of four treatments of cattle grazing (CG, 3 cattle per plot), 
sheep grazing (SG, 15 sheep per plot), mixed-grazing of  
cattle and sheep (MG, 3 cattle and 15 sheep per plot), and no 
grazing (CK) with three replicates for each treatment (Figure. 
1). Each plot was grazed in the first seven days from June to  
September only. During this period, sheep and cattle grazed 
24 h per day. Then sheep and cattle were moved to other 
grazing areas after 7 days of grazing. The grazed sheep and  
cattle were all 1.5 years old. The stocking rate was consid-
ered a moderate grazing intensity based on livestock intake, 
species composition and ground cover in the growing season. 

Figure.1 Schematic diagram of the experimental area. CG: cattle  
grazing; SG: sheep grazing; MG: mixed-grazing of cattle and sheep

Approximately 28 % of the Eurasian steppe and 91 % of the 
North American prairies (the two historically dominant tem-
perate grassland ecosystems) have already been converted 
to arable land or other land uses [9]. Livestock grazing is the 
main land use for remaining steppe and prairie. Over a quar-
ter of the global potential for soil C storage may be influenced 
by grazing [10]. Direct grazer impact on plant production, and 
thereby on potential soil C inputs, is likely mediated by grazing 
intensity, and has been extensively studied by means of theo-
retical models [11] and through experimentation [12]. Grazers 
can also indirectly alter plant community composition through 
their diet selectivity [13,14], and consequently influence soil C 
inputs [15].

 Animal excreta is an important source of GHG [16-19]. Sheep 
and cattle excreta patches are different in nature by the area 
covered, nutrient concentration in soil, and the height of fall 
of excreta [20]. It has been reported that in Inner Mongolian 
grassland grazing changes soil moisture holding capacity, 
which in turn affects GHG fluxes [8,21,22]. [23] found that soil 
water content and temperature were the main factors driving 
GHG fluxes. Other studies reported that grazing changes the 
community of soil methanotrophs in typical steppe [24]. [24] 
found that population of methanotrophs in the topsoil of desert 
steppe was higher under light grazing and moderate grazing 
sites than in non-grazed and heavily grazed sites. In tropical 
conditions, [25] reported that the average biomass of the ex-
perimental area was lower with mixed grazing animals (cattle 
and goats) compared with goat grazing alone, but the average 
daily gain of goats in mixed grazing conditions was higher than 
goat grazing alone, suggesting better use of the sward. Grazer 
type has also been found to influence some characteristics of 
alfalfa-orchard grass pasture, with mixed grazing promoting a 
more homogenous harvest than grazing with heifer only, due 
to lower rejection of dung-contaminated forage [26]. There-
fore, the amount of soil C storage may be higher than other 
grazing species, for example cattle and sheep grazing.

Previous studies on mixed grazing have seldom researched 
soil-atmosphere GHG exchange in the study region. Therefore, 
our aims here were to 1) assess the effects of the different graz-
er species (sheep grazing, cattle grazing, and cattle and sheep 
mixed-grazing) on CO2 and CH4 fluxes during the growing sea-
son in an Inner Mongolian desert steppe; and 2) analyze the re-
lationship between GHG exchange and environmental parame-
ters (soil temperature and moisture). We hypothesized that 1) 
the different intake behaviors of cattle and sheep grazing affect 
vegetative characteristics, which in turn affects soil properties 
and respiration, and 2) soil moisture content and temperature 
are the principal factors controlling the fluxes of CO2 and CH4.
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Measurements of GHGs and environmental factors

Fluxes of CH4 and CO2 were measured using the closed static 
chamber method [27]. The chamber had a dimension of 50 × 
50 × 50 (cm) made of stainless steel. A 9 VDC fan was fixed to 
the top wall of each chamber to mix the chamber atmosphere. 
The chamber was covered with a shroud made of camel hair, 
aluminum foil and white canvas to limit heating of the cham-
ber atmosphere during sampling. Three points were randomly 
selected in each plot. At each point, the chamber was placed on 
a steel base frame driven 10 cm into the soil one month prior 
to the start of the experiment. The base frame had a channel 
in which the chamber was inserted and the channel was filled 
with water to seal the chamber atmosphere. During gas flux 
determination, a disposable syringe (100 ml) with a 3-way 
valve was used to collect 200 ml of chamber atmosphere into a 
sample gas bag (Dalian Hede Technologies Co., Ltd., Dalian, Chi-
na) at 10 min intervals over a 30 min period. The gas samples 
were taken between 9:30–10:30 am, which are times that are 
representative of the average rate of CH4 and CO2 fluxes over 
a 24-h cycle [28]. Soil temperature and moisture (0–10 cm) 
were measured by thermocouples, a hand-held reader (HH-
25TC, OMEGA Engineering Inc., Stamford, CT) and a portable 
TDR probe (HH2, Delta-T Devices, Cambridge, UK) at the same 
time as the measurement of GHG fluxes. The concentrations 
of CO2 and CH4 in the gas samples were analyzed using a cavi-
ty ring-down spectrophotometer (Picarro G1301, Santa Clara, 
USA). Gas fluxes were calculated using the following equation: 
                  
                                                                                            (1)

 where F is the flux (mg m⁻22 h⁻1) of CO2 or CH4; ρ is the density 
of 1 mol CO2 or CH4 (kg m⁻3 ); ∆c ∆t⁻1 is the rate of change in 
gas concentration (h⁻1); V and A are the volume (m3) and the 
chamber base area (m2), respectively. 

Statistical Analysis

The fluxes of CO2 and CH4 were analyzed using the MIXED 
procedure of the Statistical Package for Social Science (SPSS 
13.0 for Windows, 2003), to test the significance of differenc-
es in CO2 and CH4 fluxes. Replicate flux measurements were 
averaged over sampling points for each grazing plot. Grazer 
species, period and their interactions were treated as fixed  
effects, with plot as a random effect, and sampling date as the 
repeated measure with the grazing plot used as the subject. 
The data were examined for homogeneity of variances and for 
normal distribution before analysis. Where necessary, data 
were transformed using log transformation. Paired means of 
significant differences in treatments were determined using 
the least significant difference (LSD) statistic. To test the cor-
relations between soil temperature moisture and the fluxes of 
CO2 and CH4, Pearson’s correlation analysis was performed. 
The R2 (square of Pearson correlation coefficient) value was 

used to identify the best fit function (i.e. linear or quadratic). 
All significances mentioned in the paper are at the p = 0.05 
level unless otherwise noted.

Results

Effect of grazing system on GHG fluxes

The dynamic feature of CO2 fluxes for CG, SG, MG and CK are 
shown in Figure. 2. The measured mean CO2 fluxes for CG, SG, 
MG and CK were 351.18, 315.38, 256.66 and 369.96 mg m⁻2 
h⁻1, respectively, which indicates that the experimental plots 
were a net source of soil-atmospheric CO2 exchange during the 
entire measurement period (Table 1). CO2 emission occurred 
mainly in August.

Figure 2. Seasonal variation of carbon dioxide (CO2) and methane 
(CH4) fluxes in different grazing species CG: cattle grazing; SG: sheep 
grazing; MG: mixed-grazing of cattle and sheep

The measured mean CH4 fluxes for CG, SG, MG and CK were 
-0.112, -0.116, -0.133 and -0.110 mg m⁻2 h⁻1, respectively, 
which indicates that the experimental plots were a net sink 
of soil-atmospheric CH4 exchange during the entire measure-
ment period. 

The pure carbon (C) flux converted from flux of CO2 and CH4 
is shown in Table 1. The measured mean C flux for CG, SG, MG 
and CK were 348.87, 315.27, 262.49 and 367.01 mg m⁻2 h⁻1,  
respectively, which indicates that the grazed desert steppe is a 
net source of soil-atmospheric C exchange during the growing 
season. There was lower C emission in the MG plot compared 
with CG, SG and CK plots during the growing season.
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Table 2.  Binomial regression equation between CO2 and CH4 fluxes 
with soil temperature and soil moisture

Ms: soil moisture; Ts: soil temperature; 

Discussion

Grassland ecosystems play a key role in C and N cycles, and are 
also sensitive to the impact of grazing [29]. Grazing is a com-
plex event and improper grazing practices have led to grass-
land degradation in Inner Mongolia, China. Grassland degra-
dation has a significant feedback to biosphere-atmosphere C 
exchange because grasslands can serve either as a source or 
sink. Overgrazing reduces below ground net primary produc-
tion and thereby the C storage capacity and turnover via the 
volatilization and dislocation by erosion of a huge amount of 
C previously stored in the ecosystem [30]. Thus, it was urgent 
to identify suitable grazing practices for management of grass-
land ecosystems and prevention of ecosystem degradation.

The grazed desert steppe in Inner Mongolia is a net source of 
soil atmospheric C exchange during the growing season, when 
measured as the sum of soil and plant respiration. At the same 
time, grassland soil where methanotrophic activity occurs is 
an important natural sink for CH4. In MG sites, CO2 flux was 
lower and CH4 flux was higher that in the other grazing sys-
tems. This finding suggests that planned adjustment of grazer 
species can reduce CO2 emission and increase CH4 sequestra-
tion. This maybe caused by glomalin, a secretion of arbuscu-
lar mycorrhizal fungi, which the study [31] has shown is an 
important source of the active soil organic carbon pool. Total 
glomalin storage under MG has been found to be higher than 
under grazing by single species (i.e. SG and CG) [32].

Soil carbon storage was higher in grazed area than in ungrazed 
areas in our study, which is similar to results reported by the 
study [33], who showed that grazed rangelands in mountain 

						    

.

Relationship between GHG fluxes and environmental  
factors

The relationship between soil temperature and moisture and 
the measured fluxes CO2 and CH4 under the four grazing treat-
ments are shown in Figure. 3. The results indicate that CO2 flux 
was positively correlated with topsoil (0–10 cm) temperature 
(R2 = 0.540, p < 0.01) and moisture (R2 = 0.523, p < 0.01). CH4 
flux was negatively correlated (R2 = 0.532, p < 0.01) with top-
soil moisture, whereas no significant relationship between 
CH4 flux and topsoil temperature was observed (R2 = 0.162, p > 
0.05) in this study. Considering the combined effect, binomial 
regression equations of the fluxes of CO2 (R2 = 0.509) and CH4 
(R2 = 0.327) on soil temperature and moisture were developed 
in this study (Table 2).

Figure 3. Correlation between carbon dioxide (CO2) and methane 
(CH4) fluxes with soil temperature and soil moisture
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Table 1. Comparison of greenhouse gas emission in different grazing species.

 

Item Treatment 
CG SG MG CK SEM P value 

CO2 flux 351.17±14.51 315.38±15.73 256.66±15.40 369.96±25.63 9.452 0.967 
(mg m－2 h－1) 

CH4 flux —0.112±0.006 —0.116±0.005 —0.133±0.007 —0.110±0.007 0.003 0.745 
(mg m－2 h－1) 
C flux 

348.87±15.30 315.27±15.73 262.49±15.57 367.01±25.80 9.594 0.891 
(mg m－2 h－1) 

       

CG: cattle grazing; SG: sheep grazing; MG: mixed-grazing of cattle and sheep; CK: non-grazing; SEM: standard error of mean; P: probability. 
FCO2-C + FCH4-C = F•MC /MCO2 + F•MC /MCH4

 

 

 

Item 

F = y0 + aMs + bTs + cMs
2 + dTs

2 

     y0        a        b       c d n    R2 

CO2 70.435 －35.035 24.410 1.870 －0.304 96 0.509 

CH4 －0.117 －0.0031   －0.0034 0.0004    0.0003 96 0.327 



meadows had a greater proportion of active C in total soil C 
pools. This is attributed to the effects of grazing on plant bio-
mass, regrowth, community structure, soil biotic, and abiotic 
factors [34]. Therefore, grazing affects both the physical and 
chemical properties of soil. The chemical composition and 
rate of decomposition of plant residues are important deter-
minants of C accumulation in the soil [35]. [36] reported that 
high grazing intensity reduced CH4  uptake significantly by 37.9 
% compared with non-grazed steppe, while [7] did not detect 
significant differences in CH4 uptake between grazed and non-
grazed steppes. This discrepancy in the literature stems from 
the differences in soil characteristics, degree of degradation 
associated with grazing, age of exclosures, contribution of ma-
nure to the overall nutrient balance in the ecosystem, climatic 
conditions, and original and post-grazing vegetation commu-
nities. 

Our study found that the magnitude of GHG fluxes was strong-
ly influenced by soil moisture, as has also been observed in 
other studies [4,37-39] These studies also reported that soil 
temperature is an important factor affecting microbial activity. 
[40] observed that the daily CH4 flux and topsoil temperature 
followed an exponential trend during grazing in a semiarid 
grassland, with soil temperature explaining 66–82 % of the 
variation in the daily CH4 uptake. We did not find a significant 
correlation between CH4 flux and topsoil temperature, which is 
similar to findings reported by [41,42]. This is ascribed to the 
effects of soil moisture, as rainfall in the study area is low. [43] 
reported that CH4 oxidation was limited due to low microbial 
activity at low soil moisture conditions, while it was mainly de-
termined by temperature for wet soils. In our study, there were 
correlation and regression relationships between soil environ-
mental factors (temperature and moisture) and GHG fluxes. 

Conclusion

The grazed desert steppe grassland soil was a CO2 source and a 
CH4 sink for soil-atmospheric exchange. Mixed grazing species 
(i.e. cattle and sheep) reduced CO2 emission by 26.91 % and 
18.62 %, and increased CH4 uptake by 18.75 % and 14.66  % 
compared with CG and SG, respectively. The interaction of soil 
moisture and temperature was the principal factor controlling 
soil-atmosphere GHG exchange in the grazed desert steppe in 
Inner Mongolia, China. 
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